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Abstract. The HMSA integra. eqdation has been solied for the binary mixture He-H, ober i 
rangeoidensitiesnndcomporitions at 100 K 2nd 300 K Compsrison oft he raairldistribution 
fmctions and the prcssacs shows that the results of the HMS& “re in \cry good agrcement 
with thu,e of two-component MC s.mulations close io tnr binodal c u n c  or the melting line. 
The H>ISr\ equation of state, rather tnm the usual \,an dsr \Van.s one duid approximation, 
was used to calculate the Cibbs free enthalpy; thr  latter %as s e d  io dctermine the tlutd- 
fluid phase separation in the mixture The agreement with experiments is reasonable. 
However, the spinodd curve. calculatsu from the composition fluctuation stmcturc factor 
Scc(k). is not consistcm nith the binodal cun’c. Tht, IS probabl) due to inconsistencies in 
thisstructure Inclor The direct correlation functions t h d  result from the integra. equationb 
were used to calcdste the freezing of the mixture uiih the Ha)msr and Oxlob! version of 
density fmctional theory of freezing. ahcrc thc grand potential of the solid is expanded up 
to second ordcr. To force quanritative agreement with chpcrimental results. the fourth star 
was omitted from the HCP reciprocal Idtiice. An imporiant res~lt 15 the .olubtlit) af helium 
in the hsdrogen-ricn solid of a fen mole percent \I.< also find !he intercsting phenomenon 
oi dcnsir) invenion bet*een the h!drog?n.r.cn so1.d 2nd the n}drogen.rirh fluid. as w3s 
observed expermentilly. The results on the hs.um-rich ,idc are inconsistent. probably 
because the rruncationofrheehpanjionofthegrand poteiilial ofthe solid after second order 
cannot handle the large diflerrnce In density and compo A o n  

1. Introduction 

The study of mixturesat high densities has received increasing interest in the past several 
years 111, A theory used to describe succesfully fluid-fluid separation of binary mixtures 
is variational perturbation theory [2,3] in conjunction with the van der Waals one fluid 
(VDWlF) approximation [4]. In variational perturbation theory, the free energy of the 
systemiscalculatedwith respect toa hardsphere referencesystem, where the hardsphere 
diameter is varied to obtain a minimal free energy. The VDWlF takes the properties of 
the mixture to be those of a single, hypothetical, pure fluid. The liquidus of the solid- 
fluid equilibria is also well described by the variational perturbation theory with VDWlF 
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inconjunction withanempirical freezing rule [3]. Variational and perturbation theories 
yield good thermodynamic data, but it is known that they do not yield correct structural 
data [SI. In those cases where good structural and thermodynamic data are required, 
integral equations are the appropriate tools. Furthermore, the V D W ~ F  approximation 
breaks down for systems consisting of very dissimilar particles and becomes worse at 
high densities. Recently, there have been efforts to devise integral equations that are 
useful at high densities [6-81. The results of these theories compare very well with 
computer simulation data [SI, but they have not yet been tested on binary mixtures at 
very high density. Nevertheless, they seem promising for use under extreme conditions. 
Furthermore, it is interesting to calculate fluid-fluid phase separation of binary mixtures 
with these theories, since this has not yet been done. 

A modern theory of the liquid-solid transition is the density functional theory of 
freezing [9] (om); the basic idea of which is to describe the solid as an inhomogeneous 
fluid. It yields good results when compared to computer simulations for hard spheres 
(HS) [lo]. It has also been applied to HS mixtures by Barrat eta1 [ll] and Smithline and 
Haymet [12]. adhesive hard spheres by Zheng and Oxtoby [13] and to Lennard-Jones 
(U) mixtures by Rick and Haymet [14]. However, the results for HS mixtures are in 
semiquantitative agreement with simulations [U]. In a recent paper 1161, it was shown 
by us that noneoftheom~formulationsyieldgoodagreement withcomputersimulations 
using the U and Weeks, Chandler and Andersen (wcA)-reference-u potentials and 
experimental melting data of helium and hydrogen at high pressure. For pure helium 
and hydrogen, an empirical correction is applied to account for higher-order terms. It is 
worthwhile to test the usefulness of this D ~ F  version on the phase diagram of binary 
mixtures at high pressure, since it seems the only way to calculate both liquidus and 
solidus. 

Among the binary mixtures studied at high pressure, He-H2 stands out for its 
simplicity, which makes it suitable for theoretical description, and for its importance in 
astronomy, since it constitutes the interiors of the giant planets. He-H, has been 
investigated experimentally by Street [17] at pressures up to 10 kbar and by Loubeyrc 
er a l [18]  and van den Bergh and Schouten [19] at higher pressures. The experimental 
investigations agreed on the position of the critical line and the three-phase line solid- 
fluid-fluid, but not on the shapes of the fluid-fluid equilibrium curve and the liquidus of 
the hydrogen-rich solid-fluid (SF) equilibrium. Loubeyre etdfound acuspon the helium- 
rich side of the fluid-fluid curve and also found that the liquidus of the SF equilibrium is 
nearly pressure independent up to 35 mole percent helium, before it rises to the three- 
phase equilibrium. Van den Bergh and Schouten observed a smooth fluid-fluid surface 
and a nearly linear increase of the liquidus of the SF equilibrium to the three-phase line, 
Furthermore, density inversion was observed, i.e. the solid phase has a smaller mass 
density than the hydrogen-rich fluid phase. Theoretical calculations using variational 
theory combined with the VDWlF approximation were performed by Ree 121 and van 
den Bergh and Schouten [3]. Both theoretical investigations yield a phase diagram in 
quantitative accordance with the experiments of [19], except for the width of the fluid- 
fluid coexistence curves. One of the aims of this paper is to see whether the HMSA integral 
equations(a hybridcombinationof the hypemettedchain closure andthe meanspherical 
approximation) yield an improved result. 

An important point that was not addressed in either theoretical or experimental 
investigations is the solubility in the solid phases. This phenomenon can affect the 
metallization of hydrogen and therefore also influence the properties of the solid cores 
of Saturn and Jupiter. The occurrence of solubility in a solid phase at high pressure has 
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Table 1. The exponential4 parameten of helium-hydrogen taken from [3],[21] and [22]. 

He-He 13.1 10.8 2.9673 

He-H> 12.49 17.3 3.28 
H r H l  1 1 . 1  36.4 3.43 

been demonstrated recently in the related system He-N, by Vos and Schouten [ZO]. The 
system He-H2 was chosen for the present study to investigate a possible solubility of 
helium in the hydrogen-rich solid. 

In summary,it isthepurposeofthepresentpapertotest theuseofintegralequations 
and DmFon binarymixtures at highpressure, to calculate 
from integral equations, to investigate possible solubility in the solid phase of hydrogen 
and to address the difference between the experimental findings on He-H2. In section 
2, the integral equations are outlined and compared with computer simulations and the 
potential models are defined. The fluid-fluid separation is treated in section 3. The DFTF 
is outlined and applied in section 4 and a summary and conclusions are presented in 
section 5 .  

2. Interaction potentials and fluid structure 

The exponential-6 pair potential is known to describe the interactions of molecular 
substances well over a large range in density at high pressure. It has the following form: 

r *  6 
pij(r) = *{6exp[ru,(l -+)I - aii(L) r 1 

ng - 6  'I 

where E,, is the well depth, r ;  is the separation at  the minimum of the well and (Y~, is a 
parameter that varies the stiffness of the repulsion. The parameters for helium were 
fitted byYoungefal[21]tothemeltinglineandtheequationofstate(~os)uptolZO kbar. 
The hydrogen potential was fitted by Ross et a[ [22] to beam scattering data, ab initio 
calculations and shock-wave data. The unlike interaction was fitted by van den Bergh 
and Schouten [3] to the experimental binodal curve over a large pressure range using 
variational theory. The values of the parameters are given in table 1. 

At present, the use of integral equations is a well established method for computing 
the structure and the EOS of a pure fluid [5-81. In brief, one must simultaneously solve 
the Ornstein-Zernike relation and an additional closure relation between the radial 
distribution functiong(r), the direct correlation function c(r)  of the fluid and the inter- 
action potential p(r) [23]. 

For He-H2, the HMSA closure of Zerah and Hansen [6] seems very suitable, since it 
is aself-consistent closure andits resultscompare well withsimulation data [5,6]. Here, 
self-consistency means that the compressibilityX,obtained through the vinal expression 
is consistent with the compressibility calculated from the structure factor S(k) at k = 0 
(fluctuation compressibility). The resulting integral equations are readily solved accord- 
ing to the iteration scheme of Gillan [24]. The difference between the fluctuation 
compressibility and the virial compressibility was kept smaller than 3 parts in 1000. This 
is a trade-off between accuracy and computing time. 
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Figure 1. Radial distribution functionsofa 
mixturecontaining50 mole percenthydro- 
gen at 300 K and 7.0 cm’ mol-’. The dots 
represenl the results from lhe MC simu. 
lationsandthe drawncunesare the results 
of the KMSA integral equation. 

0 2 L 6 8 

r(A) 

Table 2. Comparison of pressures of the binary mixture helium-hydrogen calculated from 
two-component hlonte Carlo simulations and !he HMSA integral equation. Numbers in 
parentheses denote variation in !he last digit. 

~ ~ b ~ ; ~ t  ( k W  
. . .  . 

T(K) XN: V(cc/mole) MC HMSA 

~~~ ... .. , ,  I., . I,. , , ~ ~ ~ ~ ~ ~ , ~ , ~ , . . ~ ~ ~ ~ ~ . ~ ~ , ,  :~. ~ ~ , ,  

100 0.10 8.5 9.82(3) 9.61 
100 0.80 10.8 11.28(6) 11.37 
300 0.00 4.7 
300 0.25 7.0 

86.2(8) 81.9 
37.9(2) 37.8 

300 0.50 7.0 53.7(1) 53.2 
300 1.00 8.8 4 1 4 3 )  41.4 

I n  order to check the solutions of the integral equation, we compare the radial 
distribution functions ( m ~ )  and pressures with simulation results. Two-component 
(NVT) Monte Carlo simulations were performed on 500 particles interacting through the 
potential of (1) with the parameters of table 1 at 100 K on 10 mole percent hydrogen in 
helium at a volume of 8.5 cm3 mol-’ (10 kbar) and on 80 mole percent hydrogen in 
helium at 10.8 cm3 mol-’ (11 kbar). At 300 K, simulations were performed on pure 
helium at 4.7 cm3 mol-’ (86 kbar), 25 mole percent hydrogen in helium at 7.0 cm3 mol-’ 
(38 kbar), 50 mole percent hydrogen in helium at 7.0 cm3 mol-’ (54 kbar) and pure 
hydrogen at 8.8 cm3 mol-‘ (42 kbar). We used 2 X 10’ configurations for equilibration 
and 2 X lo5 configurations for production. Since it is known that the HMSA integral 
equation works very well for pure substances [5, 61, it is interesting to compare the RDF 
ofthe50molepercent hydrogen mixture. Itcan beseenfromhgure 1 that theagreement 
is good. The RDF of the like species are systematically a little higher than the simulation 
results while the RDF of the unlike species is somewhat lower. The comparison of the 
pressures is shown in table 2. The present comparisons form a severe test, since the 
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conditions are either close to the binodal curve or close to the melting line. It can be 
seen from table 2 that the agreement in pressure isvery good, ranging from -2 to 1.2%. 
Therefore, we conclude that the HMSA integral equations are useful to calculate both the 
structure and thermodynamics of binary mixtures at high density. 

3. Fluid-fluid separation: the binodal and spinodal curves 

We have calculated the compressibility factor pp/p of the homogeneous fluid including 
the Wigner-Kirkwood quantum correction as a function of density for 14 compositions 
at 100 Kand 16compositionsat 300 K[25]. For each composition, typically2540points 
were used to fit the data to a polynomial of the sixth degree. The standard deviations of 
the fits varied between 5 X and 5 X lo-'. These isotherms were integrated with 
respect to density. The ideal contribution lo&) and the entropy of mixing were added 
to obtain the Helmholtzfree energy F: 

(yp('') - p ' d ( p O  dp' + lo&) + Ex, log(x,) + C (2) 
P I 2  i 

F( T,  p, x )  = Nk, T 
0 

where pis  the densi ty ,~ the pressure, pid is the pressure of the ideal gas and x, the mole 
fraction of species i. In order to obtain the Gibbs free enthalpy G at constant pressure, 
Fwascalculatedat that particularpressureand thepVtermaasadded.Tbefreeenthalpy 
of mixing AGmis obtained from: 

AGm(T,p,x) = G(T,p,x) - x G ( T , p ,  1) - (1 -x)G(T,p,O). (3) 

We constructed the double tangent to obtain the compositions of the coexisting phases. 
Examples of AGm(p,x) at three different pressures as a function of the hydrogen 
composition are shown in figure 2. At 100 K ,  the isotherms had to be extrapolated over 
a factor of two in pressure from the broken curve in figure 3 at the intermediate 
compositions (0.2 < xH2 < 0.7), since no solutions of the HMSA equations could be 
obtained (see below). This extrapolation yielded scatter in the AGm data in this con- 
centration range. Therefore, the demixing could only be calculated for pressures above 



W L Vos et a1 

4 
0 0.5 1 .o 

100 

80 

60 

40 
0 0.5 1 .o 

Figure 3. The phase diagram at 100 K. A 
and the dotted curve are the experimental 
binodal curve of Streett 1171 and melting 
pointofMillsetal[37]. The fullcurvesare 
the calculated fluid-fluid binodal curve, 
the liquidus and the solidus. The broken 
curve i s  the calculated rpinodal curve and 
the broken line is the rectilinear diameter. 

Figured. The phase diagram at 300 K. The 
dots and the broken curve are the binodal 
N N ~  and liquidus of van den Bergh and 
Schouten 1191 and Dialschenko elal [39]. 
The full cun'es are the calculated fluid- 
fluid binodal curve, the liquidus and the 
solidus. The brokencurve i s  lhecalculated 
spinodal curve. 

9 kbar. At 300 K. no extrapolation was needed. Close to the critical point, it becomes 
difficult to construct a double tangent due to the flatness of the ACm curve. The 
critical composition wasdetermined from the intersection of short extrapolationsof the 
rectilinear diameter [26] and the binodal curve. From figure 3, it  can be seen that at 
100 K, the resulting binodal curve is in good agreement with the experimental data 
of Streett 1171. The critical composition is about 46 mole percent hydrogen at the 
experimental critical pressure, in reasonable agreement with the experimental value of 
42%. The results at 300 K are shown in figure 4, together with the experimental results 
of van den Bergh and Schouten 1191. It can be seen that the calculated binodal curve is 
lower than the experimental one by about I kbar. Thisdifference is nearly constant over 
a large composition interval. This indicates that the width of the calculated binodal 
curve is the same as that found in the experiment 1191, while this was a problem with 
perturbation theory [3]. The calculatedcritical composition of38 mole percent hydrogen 
is in reasonable agreement with the experimentally determined value of 42%. Note that 
the calculated binodal curve does not show a cusp as was reported by Loubcyre et a[ 
1181. 
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FigureS. Thesecondderivativeofthe free 
enthalpy with concentration (a2G/a2),,, 
reduced with x(1 - x)/Nk,T versu den- 
sity at 300 K and a composition of 40 mole 
percent hydrogen.The fulllineis theresult 
calculated from the Bhatia-Thornton 
structure factor and the broken line is the 
result from the AGm (3). 
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In [3], the parameters of the unlike interaction were adjusted to get agreement with 
the experimental data. Also, in this case the agreement can be improved by slightly 
varying the unlike interaction. However, the interaction of pure hydrogen [22] also 
deserves attention, since at 100 K the differences in pressure with the experimental EOS 
of Mills ef a1 [27] is about 30% at 2 kbar and about 15% near the melting line. At 300 K 
and 2 kbar, the difference with Mills eta! was about 18%. This is outside the combined 
errors of the HMSA equation (see the previous section) and Ivlills er al.  

Bhatia and Thornton [28] have constructed three structure factors for binary mixtures 
from theFourier transformsofthelocalnumber density N ( k )  and the composition C(k). 
The composition fluctuations are represented by thestructure factor Scc(k), defined as: 

Scc(k) = N .  ( C * ( k ) .  C ( k ) )  (4) 
where the brackets denote ensemble average. From this structure factor, it is possible 
to calculate the second derivative of the free enthalpy with respect to composition, 
(azG/a2),,,, at constant pressure and temperature, since: 

It is convenient to scale this expression with the product of the mole fractions of both 
components, since in the limit of zero density, Scc(0) is equal to x(1 - x ) .  Setting this 
second derivative equal to zero determines the spinodal curve, i.e. the curve where a 
(meta)stable mixture becomes unstable with respect to composition fluctuations. The 
spinodal curve always lies inside the binodal, except in the critical point, where both 
curves touch. Since the integral equation does not yield an accurate solution near the 
spinodal curve, (JZG/axz),,,has to be extrapolated as a function of density or pressure 
to find the zero crossing. An example of (aZG/JxZ), ,~/A'k,T, normalized with the 
mole fractions, as a function of density at xH2 = 40% and T =  300 K is shown in figure 
5. With increasing density, it decreasesfrom its limitingvalue 1, steepening with increas- 
ing density. At high density, however, an inflection point occurs. On some occasions 
(100 K and 60%), even two inflection points showed up. We had no reason to expect 
inflection points, since from figure 2, it can be seen that the bump on the AGm curves 
increases monotonously with pressure. For comparison, we have calculated 
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(dZG/.3xZ)p,r/NkBT directly from AGm(x), in fitting GeXC = AG" - Ejilog(xi) as a 
function of mole fraction with a polynomial [29]. Using this method, we found no 
inflection points on (aZG/axZ),,,/Nk,Tas a function of density and also, the density of 
thezerocrossingwaslower. Furthermore, we have calculated (aZG/aX2),,rasafunction 
of density for a system interacting through a (l/r)" potential with parameters mimicking 
[30] He-H2. Again, we found no inflection points. We used a short linear extrapolation 
to determine the density at the zero crossing of (aZG/axZ)p,r/NkBT calculated from 
Scc(0). The spinodal curve thus obtained for T = 100 K is also shown in figure 3. It is 
clear that the spinodal and binodal curves do not touch in the critical point and that the 
spinodal curve does not lie completely inside the binodal curve. At T = 300 K, the 
spioodal curve does lie inside the binodal curve, but is is about 17 kbar higher than the 
calculated binodal curve at the critical composition, see figure 4. 

We have checked whether this inconsistency might be due to round-off errors in the 
Gillan [24] iteration scheme. For this reason. different mesh sizes were used, but no 
noticeable difference was found. A reason why (a2G/ax2),,, may comc out wrong at 
high density is that self-consistency of the compressibility x r ,  does not necessarily mean 
consistency of (aZG/aX?),,. Since we are in fact dealing with two densities (of the 
different species), one should in principle take two consistency criteria. 

Note that the discrepancies between the spinodal and binodal cruves bear resem- 
blance with the recent results of Lomba [31] for a system of pure Lennard-Jones 
molecules with the sclf-consistent RHNC closure. Lomba also finds a region where the 
binodal curve cannot be calculated through integral equations. Furthermore, it has also 
been found that the Born-Green integral equation has problems near the critical point 
of a square well system (321. On the other hand, at 300 K we find that one can obtain 
solutions of thc HMSA integral equations beyond the critical point. 

Nevertheless, since the binodal curves are calculated from isotherms that are in very 
good agreement with computer simulations (cf section 2), we believe that they are 
reliable and it is the spinodal curve that needs improvement. The fact that the binodal 
curves calculated from the HMSA integral equation are in reasonable agreement with 
experiments at very high pressure indicate the power of this integral equation. 

W L Vos et ai 

4. Solid-fluid equilibria 

In a previous paper [16], we showed that using the Haymet and Oxtoby [33] (HO) 
formulation of DFTF and discarding the first reciprocal lattice vector (RLV) where the 
direct correlation function is negatllve, as proposed by Rovere andTosi [34], reasonable 
agreement with experiments on pure helium and hydrogen could be obtained. In the HO 
formulation, the grand potential 51, of a solid phase is expanded around the grand 
potential 51, of the coexisting fluid, while assuming constant chemical potential p ,  
volume Vand temperature T. For binary mixtures, this expansion reads [12]: 
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Table 3. Comparison of the experimental 117,191 and calculated freezing pressures and 
transition volumes of the mixture helium-hydrogen and comparison of the calculated fluid 
andsolid mass densities. The compositions of the solid and the masdensities are calculated 
quantities. 

T =  lOOK 

*H1 P ( k W  VW (cclmole) V,,, (cclmole) P (dc4 
fluid solid expt. calc. expt. calc. expt. calc. fluid solid 

0.00 0.00 21.77 21.17 6.65 6.68 6.45 6.15 
0.02 0.00 - 20.77 - 6.81 - 6.16 
0.80 0.983 - 9.70 - 11.78 - 11.43 0.204 0.178 
0.90 0.984 - 9.49 - 12.19 - 11.41 0.180 0.178 
1.00 1.00 7.77 8.66 13.75 12.79 13.18 11.70 0.156 0.171 

T=300K 

0.00 0.00 121.0 134.6 4.4 4.19 4.3 3.95 
0.02 0.00 - 130.4 - 4.29 - 3.95 
0.90 0.972 59.5 91.6 - 6.87 - 6.67 0.320 0.308 
0.95 0.976 56.8 89.6 - 7.01 - 6.72 0.300 0.305 
1.W 1.00 53.7 84.1 8.2 7.23 8.0 6.90 0.277 0.290 

where = l / k B T ,  p,(r) is the solid density of component i, piF is the fluid density of 
component i and c<,(Ir - r' l )  is the fluid direct correlation function between species i 
and j at densities p B  and P , ~ .  This series is usually truncated after second order for 
lack of information on the higher-order correlation functions. The solid density is 
conveniently parametrized as a sum of Gaussians on an HCP lattice. In reciprocal space 
this reads: 

where G denotes the RLV, pa is the average solid density and U, is the inverse width 
squared of the Gaussian peaks of component i. Equation (6) is minimized with respect 
to a; and p S  at constant fluid density, since at equilibrium, B equals the grand potential 
and thus, 51 = -pV.  The freezing point is obtained by varying until R, = RF, which 
implies equal pressures of both phases. In practice, the density was varied at constant 
composition of the fluid phase to yield the freezing point. The fluid direct correlation 
functions were calculated with the HMSA integral equations. This is a good description 
of the fluid structure. For the crystal structure, we took the HCP lattice, since it is 
experimentauy determined that this is the structure of the solid that coexists with the 
fluid for hydrogen [35] and for helium (see 1361 and references therein). In order to 
obtain agreement with the experiments, the fourth FLV was omitted [16,34] from the 
sum in (7). For the HCP lattice, this vector corresponds to negative values of@), so that 
the fluid phase is stabilized (e@) is the Fourier transform of the direct correlation 
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I 8.5 ' Figure 6. The solid-fluid equilibrium at 
100KcalculatedwilhDFTF.Thefullcurves 
are the tiquidus and the solidus. The 
broken a w e  is the calculated fluid-fluid 

0.7 0.8 0.9 1 .o 

x(HJ binodalcurve. 

Table 4. Comparison of the calculated Ihree-phase equilibria with the experimental results 
of 1171 and [19]. F1 denotes the helium-rich fluid, Fz the hydrogen-rich fluid and S the 
hydrogen-rich solid. Compositions are in mole fraction hydrogen. ... . 

XFI xF2 *S . . .  . , . ~, 
P @bar) 

T(K) expt. calc, expt. cak. expt. calc. expt. calc. 

100 9.35 9.7 0.104 0.115 0.813 0.82 - 0.983 
300 64.7 91 0.11 0.02 0.78 0.92 - 0.97 

. .. . . ~ ,..,. . , .."I, , 
~~~~ ~~~ ~~~ 

~ ~ ~~~ ~ 

function). The sum was carried out over 1800 reciprocal lattice vectors to achieve 
convergence. 

The results for the freezing at 100 K at the hydrogen-rich side are shown in figures 3 
and6(detail) and table 3,Thepressure ofthe liquidusincreasessmoothly withdecreasing 
mole fraction H,. The solidus increases steeply with mole fraction H?, the solubility 
being 1.7 mole percent helium at the highest calculated state point. The agreement with 
the freezing point of pure hydrogen [37] and the three-phase line solid-fluid-fluid [17] 
(see table 4) is good. However, this good agreement is due to a fortuitous cancellation 
of errors, since for pure hydrogen, the calculated volume of the fluid at the transition is 
10% smaller than the experimental value [27]. This is partly compensated because the 
calculated isotherm is 15% off in pressure in this region. An interesting point is shown 
in table 3: for the compositions 0.8 and 0.9: the fluid has a higher mass density than the 
solid. This results in density inversion of the solid and fluid phases, that has also 
been observed experimentally [19]. For pure helium, the freezing pressure is in good 
agreement with the experimental data 1381 (see table 3). For a fluid mixture with 2% 
hydrogen, there is no solubility of hydrogen in the solid. Note however, that the phase 
separation is found at pressures lower than the melting point of helium. This means that 
befow the freezing pressure of helium, a solid consisting of pure helium grows from a 
helium-rich fluid mixture, while starting from a pure helium fluid, no solid would yet 
grow. This is of course inconsistent. If a helium-rich mixture freezes at a lower pressure 
than the pure component, there should be a pentectic point and thus a solubility in the 
solid that is larger than in the Buid. We have checked this by constraining the solid 
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are the liquidus and the solidus. The 
broken curve is the calculated fluid-fluid 

x(H,) binodal curve. 

composition to be higher than the fluid composition. As a result, no minimum of Rs as 
a function of pS occurred. 

At 300 K (see figures 4 and 7 and table 3), the pressure of the liquidus also increases 
gradually from the freezing point of hydrogen, in agreement with the results of Schouten 
and van den Bergh 1191. The solubility of helium in the solid is about 3 mole percent at 
the pressure of the three-phase equilibrium. However, the quantitative agreement with 
experiments [19,39] is bad, since the transition pressure found is 60% too high. As a 
result, the agreement of the calculated three-phase line with the experimental one is 
also bad, see table 4. It can be seen from table 3 that density inversion occurs for a fluid 
containing 10% helium, but not for 5% helium and smaller mole fractions. This is in 
reasonable agreement with experiments [19], where at most 6% was needed to obtain 
density inversion. On the helium-rich side, the agreement of the calculated freezing 
pressure with experiment [38] is remarkable, see table 3. However, the same incon- 
sistency occurs as at 100 K. Again, the helium-rich fluid is found to be in equilibrium 
with a pure helium solid at pressures below the freezing pressure of pure helium. 

We can think of three possible reasons for this inconsistency. Firstly, it may be due 
to the omission of the fourth RLV of the HCP lattice. We have performed calculations at 
lOOK taking into account the fourth RLV. Pure helium then freezes at 75 kbar into an 
HCP lattice, while a mixture with 2% hydrogen freezes at 62 kbar into a solid consisting 
of pure helium. These results have to be considered withcare, sincewe had to extrapolate 
QsQ, to obtain the transition points. Nevertheless, it suggests that the omission of the 
fourth star of the HCP lattice is not the cause of the inconsistency. 

Secondly, the helium-rich fluid may be metastable with respect to demixing into a 
hydrogen-rich solid and a helium-rich fluid ( s H 2 ~ ) .  We found that at 7 = 300 K and at 
the freezing pressureofhelium amkture containing2% hydrogen was indeed metastable 
with respect to fluid-fluid separation and thus certainly to demixing into a fluid and a 
hydrogen-rich solid. It is then likely that the solidus and liquidus that start from the 
helium melting point do increase and cross the s H 2 ~  equilibrium at a very small mole 
fraction hydrogen. Thus, at 2% hyd:ogen, one should obtain coexistence with a hydro- 
gen-rich solid. We have tried to obtain such a coexistence but did not find one, probably 
because the difference in density is too large (about 50%) and the difference in con- 
centration is also very large (the concentration of the solid is about 97% and of the fluid 
less than 2%), causing the expansion to break down. 
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In the third place. the inconsistency may be due to the truncation of the expansion 
of the grand potential of the solid (7) after second order. Unfortunately, it is not possible 
to calculate the three-particle direct correlation function for a mixture at these high 
densities, On the other hand, in the phase diagram calculated for a mixture of Lennard- 
Jones moleculeswith a diameter ratio of 0.9 by the same expansion (see [14]. figure 8), 
an analogous inconsistency occurs. In this case, an azeotropicphase diagram is obtained 
where, for a mole fraction of the large molecules above 0.5, the solidus is at higher 
temperatures than the liquidus. 

5. Summary and conclusions 

The self-consistent HMSA integral equation has been tested on the system helium- 
hydrogen at very high density. The results for the pressure and the radial distribution 
functions are in good agreement with computer simulations. From the resulting 
isotherms, the fluid-fluid demixing was calculated. It is in fair agreement with the 
experimental results of Streett and van den Berghand Schouten. Thisdemonstrates the 
usefulness of the HMSA integral equation for binary mixtures and the consistency of the 
HMSA results with variational perturbation theory with which the unlike interaction was 
determined. The width of the binodal curve is in far better agreement with experiments 
than the one calculated from variational theory with the VDWIF approximation. There- 
fore, it seems worthwhile to tune the unlike interaction potentials with the help of the 
HMSA integral equation to the experimental results. The spinodal curve, calculated from 
the composition fluctuation structure factor S,(k) is not consistent with the calculated 
binodal curve. The reason for this inconsistency is probably that the self-consistency of 
the integral equations is not imposed on Sm(k). 

The solid-fluid equilibria of the mixture were calculated using the density functional 
theory of freezing in the formulation of Haymet and Oxtoby, truncating thc expansion 
after second order and leaving out the fourth RLV. At 100 K, the agreement with 
experiments is good at the hydrogen-rich side, but this is probably fortuitous. At 300 K. 
on the hydrogen-richside, theshapeof theliquidusis in agreement with the experimental 
resultofvanden Bergh and Schouten. The agreement with theexperimentsisqualitative. 
On both isotherms, we find a solubility of helium in the hydrogen-rich solid of a few 
percent. It is interesting to verify this result experimentally. The unusual phenomenon 
of density inversion between the solid and fluid phases is found, in agreement with 
experiments. For pure helium, the agreement with experimental data is good. In 
contrast. a mixture containing mostly helium is found to freeze into a pure helium solid 
at apressure below the freezing pressure ofpure helium, which is inconsistent. Probably, 
such a mixture should freeze into a hydrogen-rich solid that has a very different density, 
so that the expansion breaks down. Therefore, the present version of DFIT seems useful 
as long as the difference in density between the coexisting phases is not too large. 
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