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Abstract. The HMsA integral equation has been soived for the binary mixture He—H; over a
range of densities and compositions at 100 K and 300 K. Comparison of the radial distribution
functions and the pressures shows that the results of the HMSA are in very good agreement
with those of two-component MC simulations close to the binodal curve or the melting line.
The xmsa equation of state, rather than the usual van der Waals one fluid approximation,
was used to calculate the Gibbs free enthalpy; the latter was used to determine the fluid-
fluid phase separation in the mixture, The agreement with experiments is reasonable.
However, the spinodal curve, caleulated from the composition fluctuation structure factor
Scc(k), is not consistent with the binodal curve. This is probably due to inconsistencies in
this structure factor. The direct correlation functions that result from the integral equations
were used to calculate the freezing of the mixture with the Haymet and Qxtoby version of
density functional theory of freezing, where the grand potential of the solid is expanded up
to second order. To force quantitative agreement with experimental results, the fourth star
was omitted from the HCP reciprocal lattice. An important result is the solubility of helium
in the hydrogen-rich solid of a few mole percent. We also find the interesting phenomenon
of density inversion between the hydrogen-rich solid and the hydrogen-rich fluid, as was
observed experimentally. The results on the helium-rich side are inconsistent, probably
because the truncation of the expansion of the grand potential of the solid after second order
cannot handle the large difference in density and composition.

1. Introduction

The study of mixtures at high densities has received increasing interest in the past several
years [1]. A theory used to describe succesfully fluid—fluid separation of binary mixtures
is variational perturbation theory [2, 3] in conjunction with the van der Waals one fluid
(VDWI1F) approximation [4]. In variational perturbation theory, the free energy of the
systemiscalculated with respect toa hard sphere reference system, where the hardsphere
diameter is varied to obtain a minimal free energy. The vDWi1F takes the properties of
the mixture to be those of a single, hypothetical, pure fluid. The liquidus of the solid—
fluid equilibria is also well described by the variational perturbation theory with vDW1F
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in conjunction with an empirical freezing rule [3]. Variational and perturbation theories
yield good thermodynamic data, but it is known that they do not yield correct structural
data [5]. In those cases where good structural and thermodynamic data are required,
integral equations are the appropriate tools. Furthermore, the vbwlF approximation
breaks down for systems consisting of very dissimilar particles and becomes worse at
high densities. Recently, there have been efforts to devise integral equations that are
useful at high densities [6-8]. The results of these theories compare very well with
computer simulation data [5], but they have not yet been tested on binary mixtures at
very high density. Nevertheless, they seem promising for use under extreme conditions.
Furthermore, it is interesting to calculate fluid—fluid phase separation of binary mixtures
with these theories, since this has not yet been done,

A modern theory of the liquid-solid transition is the density functional theory of
freezing [9] (DFTF); the basic idea of which is to describe the solid as an inhomogeneous
fluid. 1t yields good results when compared to computer simulations for hard spheres
(us) [10]. It has also been applied to Hs mixtures by Barrat e of [11] and Smithline and
Haymet {12], adhesive hard spheres by Zheng and Oxtoby [13] and to Lennard-Jones
(Ly) mixtures by Rick and Haymet [14]. However, the results for Hs mixtures are in
semiquantitative agreement with simulations [15]. In a recent paper [16], it was shown
by us that none of the DFTF formulations yield good agreement with computer simutations
using the L1 and Weeks, Chandier and Andersen {wca)-reference-Lj potentials and
experimental melting data of helium and hydrogen at high pressure. For pure helium
and hydrogen, an empirical correction is applied to account for higher-order terms, It is
worthwhile to test the usefulness of this DFTF version on the phase diagram of binary
mixtures at high pressure, since it seems the only way to calculate both liquidus and
solidus.

Among the binary mixtures studied at high pressure, He-H, stands out for its
simplicity, which makes it suitable for theoretical description, and for its importance in
astronomy, since it constitutes the interiors of the giant planets. He-H, has been
investigated experimentally by Street [17] at pressures up to 10 kbar and by Loubeyre
et al [18] and van den Bergh and Schouten [19] at higher pressures. The experimental
investigations agreed on the position of the critical line and the three-phase line solid-
fluid—fluid, but not on the shapes of the Auid-fuid equilibrium curve and the liquidus of
the hydrogen-rich solid-fluid (SF) equilibrium. Loubeyre etal found a cusp on the helium-
rich side of the fluid-fluid curve and also found that the liquidus of the sF equilibrium is
nearly pressure independent up to 35 mole percent helium, before it rises to the three-
phase equilibrium. Van den Bergh and Schouten observed a smooth fluid-fluid surface
and a nearly linear increase of the liquidus of the SF equilibrium to the three-phase line.
Furthermore, density inversion was observed, i.e. the solid phase has a smaller mass
density than the hydrogen-rich fluid phase. Theoretical calculations using variational
theory combined with the vDW1iF approximation were performed by Ree [2] and van
den Bergh and Schouten [3]. Both theoretical investigations yield a phase diagram in
quantitative accordance with the experiments of [19], except for the width of the fluid—-
fluid coexistence curves. One of the aims of this paper is to see whether the HMSA integral
equations (ahybrid combination of the hypernetted chain closure and the mean spherical
approximation) yield an improved result.

An important point that was not addressed in either theoretical or experimental
investigations is the solubility in the solid phases. This phenomenon can affect the
metallization of hydrogen and therefore also influence the properties of the solid cores
of Saturn and Jupiter. The occarrence of solubility in a solid phase at high pressure has
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Table 1. The exponential-6 parameters of helium-hydrogen taken from [3], [21] and {22].

@, £k (K) r (A)
He-He 13.1 10.8 2.9673
H-H; 111 36.4 3.43
He-H, 12.49 17.3 3.28

been demonstrated recently in the related system He—N, by Vos and Schouten [20]. The
system He—H; was chosen for the present study to investigate a possible solubility of
helium in the hydrogen-rich solid.

In summary, it is the purpose of the present paper to test the use of integral equations
and DFTFon binary mixtures at high pressure, to calculate the fluid-fluid phase separation
from integral equations, to investigate possible solubility in the solid phase of hydrogen
and to address the difference between the experimental findings on He~-H,. In section
2, the integral equations are outlined and compared with cornputer simulations and the
potential models are defined. The fluid—fluid separation is treated in section 3. The DFTF
is outlined and applied in section 4 and a summary and conclusions are presented in
section 5.

2. Interaction potentials and fluid structure

The exponential-6 pair potential is known to describe the interactions of molecular
substances well over a large range in density at high pressure. It has the following form:

oforla-S) ) o

&y

‘Pif(") =

where ¢ is the well depth, r} is the separation at the minimum of the well and o is a
parameter that varies the stiffness of the repulsion. The parameters for helium were
fitted by Youngeta/[21] to the melting line and the equation of state (E0s) upto 120 kbar.
The hydrogen potential was fitted by Ross ez af [22] to beam scattering data, ab initio
calculations and shock-wave data. The unlike interaction was fitted by van den Bergh
and Schouten [3] to the experimental binodal curve over a large pressure range using
variational theory. The values of the parameters are given in table 1.

At present, the use of integral equations is a well established method for computing
the structure and the EOs of a pure fluid [5-8]. In brief, one must simuitaneously solve
the Ornstein~Zernike relation and an additional closure relation between the radial
distribution function g(#), the direct correlation function ¢(r) of the fluid and the inter-
action potential g(r) [23].

For He-H., the HMsa closure of Zerah and Hansen [6] seems very suitable, since it
is a self-consistent closure and its results compare well with simulation data [5, 6]. Here,
self-consistency means that the compressibility yrobtained through the virial expression
is consistent with the compressibility calculated from the structure factor S(k) at &k =0
(fluctuation compressibility). The resulting integral equations are readily solved accord-
ing to the iteration scheme of Gillan [24]. The difference between the fluctuation
compressibility and the virial compressibility was kept smaller than 3 parts in 1000. This
is a trade-off between accuracy and computing time.

[3
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Figure 1. Radial distribution functions of a
mixture containing 50 mole percent hydro-
gen at 300 K and 7.0 em?® mol™*. The dots
represent the results from the MC simu-
lations and the drawn curves are the results
r{A) of the sMsa integral equation.

Table 2. Comparison of pressures of the binary mixture helium-hydrogen caleulated from
two-component Monte Carlo simulations and the HMSA integral equation. Numbers in
parentheses denote variation in the last digit.

Puassical (kbar)

T(K) Xyt V (cc/mole) MC HMSA
- T e EER o ST 1 sz = etk S O
100 0.10 8.5 9.82(3) 9.67
100 0.80 10.8 11.28(6) 11,37
300 0.00 4.7 86.2(8) 8719
300 0.25 7.0 3792y 0 3R
300 0.50 7.0 53.7(1) 53.2

300 1.00 8.8 41.5(3) 41.4

In order to check the solutions of the integral equation, we compare the radial
distribution functions (RDF) and pressures with simulation resuits. Two-component
(vvT) Monte Carlo simulations were performed on 500 particles interacting through the
potential of (1) with the parameters of table 1 at 100 K on 10 mole percent hydrogen in
helium at a volume of 8.5 em® mol™! (10kbar) and on 80 mole percent hydrogen in
helium at 10.8 cm® mol™’ (11 kbar). At 300 X, simulations were performed on pure
helium at 4.7 cm® mol~* (86 kbar), 25 mole percent hydrogen in helium at 7.0 cm® mol~!
{38 kbar), 50 mole percent hydrogen in helium at 7.0 cm® moi™! (54 kbar) and pure
hydrogen at §.8 cm® mol™! (42 kbar). We used 2 x 10° configurations for equilibration
and 2 x 10° configurations for production. Since it is known that the HMsa integral
equation works very well for pure substances |5, 6], it is interesting to compare the RDF
of the 50 mole percent hydrogen mixture. It can be seen from figure 1 that the agreement
is good. The RDF of the like species are systematically a little higher than the simulation
results while the RDF of the unlike species is somewhat lower. The comparison of the
pressures is shown in table 2. The present comparisons form a severe test, since the
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Figure 2. The free enthalpy on mixing ver-
sus composition at 300 K. O, the results at
x(H2) 40 kbar; A, at 50 kbar and M, at 60 kbar.

conditions are either close to the binodal curve or close to the melting line. It can be
seen from table 2 that the agreement in pressure is very good, ranging from —2 to +2%.
Therefore, we conclude that the HMSA integral equations are useful to calculate both the
structure and thermodynamics of binary mixtures at high density.

3. Fluid—fluid separation: the binodal and spinodal curves

We have calculated the compressibility factor Sp/p of the homogeneous fluid including
the Wigner—Kirkwood quantum correction as a function of density for 14 compositions
at 100 K and 16 compositions at 300 K [25]. For each composition, typically 2540 points
were used to fit the data to a polynomial of the sixth degree. The standard deviations of
the fits varied between 5 x 107* and 5 x 1073, These isotherms were integrated with
respect to density. The ideal contribution log(p) and the entropy of mixing were added
to obtain the Helmholtz free energy F:

#p(p") = p.d(p )

T, p,x) = Nkg r( dp’ + log(p) + 2 x; log(x,) + c) 2

0

where p is the density, p the pressure, pyq is the pressure of the ideal gas and x, the mole
fraction of species i. In order to obtain the Gibbs free enthalpy (5 at constant pressure,
Fwascaiculated at that particular pressure and the pV term was added. The free enthalpy
of mixing AG™ is obtained from:

AG™T,p,xy=G(T,p,x) ~xG(T,p, 1) — (1 - x)G({T, p, 0). 3

We constructed the double tangent to obtain the compositions of the coexisting phases.
Examples of AG™(p, x) at three different pressures as a function of the hydrogen
composition are shown in figure 2. At 100 K, the isotherms had to be extrapolated over
a factor of two in pressure from the broken curve in figure 3 at the intermediate
compositions (0.2 < xy, <0.7), since no solutions of the HMSA equations could be

obtained (see below). This extrapolation yielded scatter in the AG™ data in this con-
centration range. Therefore, the demixing could only be calculated for pressures above
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9 kbar. At 300 K, no extrapolation was needed. Close to the critical point, it becomes
difficult to construct a double tangent due to the flatness of the AG™ curve. The
critical composition was determined from the intersection of short extrapolations of the
rectilinear diameter [26] and the binodal curve. From figure 3, it can be seen that at
100 K, the resulting binodal curve is in good agreement with the experimental data
of Streett {17]. The critical composition is about 46 mole percent hydrogen at the
experimental critical pressure, in reasonable agreement with the experimental value of
42%. The results at 300 K are shown in figure 4, together with the experimental results
of van den Bergh and Schouten [19]. It can be seen that the calculated binodal curve is
lower than the experimental one by about 7 kbar. This difference is nearly constant over
a large composition interval. This indicates that the width of the calculated binodal
curve is the same as that found in the experiment [19], while this was a problem with
perturbation theory [3]. The calculated critical composition of 38 mole percent hydrogen
is in reasonable agreement with the experimentally determined value of 42%. Note that

the calculated binodal curve does not show a cusp as was reported by Loubeyre et al
[18].
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sity at 300 K and a composition of 40 mole
percent hydrogen. The fullline is the result
O .08 C.16 calculated from the Bhatia-Thornton
structure factor and the broken line is the
result from the AG™ (3).
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In [3], the parameters of the unlike interaction were adjusted to get agreement with
the experimental data. Also, in this case the agreement can be improved by slightly
varying the unlike interaction. However, the interaction of pure hydrogen [22] also
deserves attention, since at 100 K the differences in pressure with the experimental EOS
of Mills et al [27] is about 30% at 2 kbar and about 15% near the melting line. At 300K
and 2 kbar, the difference with Mills e af was about 18%%. This is outside the combined
errors of the HMSA equation (see the previous section) and Mills et al.

Bhatia and Thornton [28] have constructed three structure factors for binary mixtures
from the Fourier transforms of the local number density N(k) and the composition C(k).
The composition fluctuations are represented by the structure factor Scc(k), defined as:

Scc(k) =N- (C*(k) * C(k)) (4)

where the brackets denote ensemble average. From this structure factor, it is possible
to calculate the second derivative of the free enthalpy with respect to composition,
{8*G/8x?), 1, at constant pressure and temperature, since:

(azc) = i Ve T
6x2 p‘T_kl—»n-(l]Scc(k)'

It is convenient to scale this expression with the product of the mole fractions of both
components, since in the limit of zero density, Scc(0) is equal to x(1 — x). Setting this
second derivative equal to zero determines the spinodal curve, i.e. the curve where a
(meta)stable mixture becomes unstable with respect to composition fluctuations. The
spinodal curve always lies inside the binodal, except in the critical point, where both
curves touch. Since the integral equation does not yield an accurate solution near the
spinodal curve, (32G/ax?), rhas to be extrapolated as a function of density or pressure
to find the zero crossing. An example of (8°G/dx%), r/NkgT, normalized with the
mole fractions, as a function of density at x, = 40% and T = 300 K is shown in figure
5. Withincreasing density, it decreases from its limiting value 1, steepening with increas-
ing density. At high density, however, an inflection point occurs. On some occasions
(100K and 60%), even two inflection points showed up. We had no reason to expect
inflection points, since from figure 2, it can be seen that the bump on the AG™ curves
increases monotonously with pressure. For comparison, we have calculated

)
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(8°G/8x™), r/NkgT directly from AG™(x), in fitting G** = AG™ — Zx;log(x,) as a
function of mole fraction with a polynomial [29]. Using this method, we found no
inflection points on (3°G/8x%), 7/NkgT as a function of density and also, the density of
the zero crossing was lower. Furthermore, we have calculated (3°G/x?), rasa function
of density for a system interacting through a (1/r)"? potential with parameters mimicking
[30] He-H,. Again, we found no inflection points. We used a short linear extrapolation
to determine the density at the zero crossing of (6°G/ax?), r/NkpT calculated from
Scc(0). The spinodal curve thus obtained for T= 100 K is also shown in figure 3. It is
clear that the spinodal and binodal curves do not touch in the critical point and that the
spinodal curve does not lie completely inside the binodal curve. At T'= 300K, the
spinodal curve does lie inside the binodal curve, but is is about 17 kbar higher than the
calcuiated binodal curve at the critical composition, see figure 4.

We have checked whether this inconsistency might be due to round-off errors in the
Gillan [24] iteration scheme. For this reason. different mesh sizes were used, but no
noticeable difference was found. A reason why (3°G/ax?), r may come out wrong at
high density is that self-consistency of the compressibility yr, does not necessarily mean
consistency of (9°G/ax%), r. Since we are in fact dealing with two densities {of the
different spectes), one should in principle take two consistency criteria.

Note that the discrepancies between the spinodal and binodal cruves bear resem-
blance with the recent results of Lomba [31] for a system of pure Lennard-Jones
molecules with the seif-consistent RHNC closure. Lomba also finds a region where the
binodal curve cannot be calculated through integral equations. Furthermore, it has also
been found that the Born—Green integral equation has problems near the critical point
of a square well system [32]. On the other hand, at 300 K we find that one can obtain
solutions of the HMSA integral equations beyond the critical point.

Nevertheless, since the binodal curves are calculated from isotherms that are in very
good agreement with computer simulations (cf section 2), we believe that they are
reliable and it is the spinodal curve that needs improvement, The fact that the birodal
curves calculated from the HMsa integral equation are in reasonable agreement with
experiments at very high pressure indicate the power of this integral equation.

4. Solid—fluid equilibria

In a previous paper [16], we showed that using the Haymet and Oxtoby [33] (HO)
formulation of DFTF and discarding the first reciprocal lattice vector (RLY) where the
direct correlation function is negative, as proposed by Rovere and Tosi [34], reasonable
agreement with experiments on pure helium and hydrogen could be obtained. In the HO
formulation, the grand potential Qg of a solid phase is expanded around the grand
potential Qr of the coexisting fluid, while assuming constant chemical potential u,
volume V and temperature T. For binary mixtures, this expansion reads [12]:

-
=

M = ;‘, J‘dr(p,-(r) log(ﬁ;j—:)) = (piry - P:"F))

=1

-‘éé fjdrdr’ ng(|r_"|)(9i(’)_PsF)

Lj=1

% (p;(r) = pjx) + higher-order terms (6)
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Table 3. Comparison of the experimental [17, 19] and caiculated freezing pressures and '
transition volumes of the mixture helium-hydrogen and comparison of the calculated fiuid
and solid mass densities. The compositions of the solid and the mass densities are calculated

quantities.
T=100K

XHy p (kbar) Vaia (ce/mole)  Viugq (cc/mole) plg/ec)
fluid solid expt. cale. expt. cale. expt.  caic, fluid  solid
0.00 000 2177 2117 665 6.68 6.45 6.15
0.02 00D - 2077 — 6.81 — 6.16
0.80 0.983 — 2.7 — 11.78 — 11.43 0204 0.178
0.90 0984 — 949 — 12.19 —_ 11.41 0.180 0.178
1.00  1.00 7.7 866 1375 1279 13.18 1170 0.156 0.171
T=300K

“Hy p (kbar} Vi (c¢/mole) Viaiia (cc/mole) p (g/cc)
fluid  solid expt. calc, expt. calc. expt.  cale, fluid solid

000 0.00 1210 134.6 4.4 4,19 4.3 3.95

002 0.00 - 130.4 — 429 — 3.95

050 0972 595 9.6 — 6.87 — 6.67 0.320 0.308
095 0976 568 89.6 — 7.01 — 6.72 0.300 0.305
1.00 1.00 53.7 34.1 82 7.23 8.0 6.90 0.277 0.290

where 8 = 1/kgT, p{r) is the solid density of component i, p; is the fluid density of
component i and c;(|r — r'}) is the fluid direct correlation function between species i
and j at densities pr and pgr. This series is usually truncated after second order for
lack of information on the higher-order correlation functions. The solid density is
conveniently parametrized as a sum of Gaussians on an HCP lattice. In reciprocal space
this reads:

p:(P) = pis %e-“f’“« eisr 7)

where G denotes the RLV, ps is the average solid density and «; is the inverse width
squared of the Gaussian peaks of component {. Equation (6) is minimized with respect
to &; and p at constant fluid density, since at equilibrium, Q2 equals the grand potential
and thus, & = —pV. The freezing point is obtained by varying p; until g = Qg, which
implies equal pressures of both phases. In practice, the density was varied at constant
composition of the fluid phase to yield the freezing point. The fluid direct correlation
functions were calculated with the HMsA integral equations. This is a pood description
of the fluid structure. For the crystal structure, we took the HCP lattice, since it is
experimentally determined that this is the structuyre of the solid that coexists with the
fluid for hydrogen [35] and for helium (see [36] and references therein}. In order to
obtain agreement with the experiments, the fourth rLvV was omitted {16, 34] from the
sum in (7). For the Hep lattice, this vector corresponds to negative values of &(k), so that
the fluid phase is stabilized (&(k) is the Fourier transform of the direct correlation
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85 Figure 6, The solid—fiuid equilibrium at

0.7 100 K calculated with DeYE. The full curves

are the Hquidus and the solidus. The
broken curve is the calculated fluid-fluid
binodal curve.

Table 4. Comparison of the calcujated three-phase equilibria with the experimental results
of [17] and [19]. F1 denotes the helium-rich fluid, F2 the hydrogen-rich fluid and S the
hydrogen-rich solid, Compositions are in mole fraction hydrogen.

b (kbar) XF Xrz A
T{K) expt. cale. expt. calc. expt, calc. expt. calc,
100 935 97 0104 0115 0813 08 — 0.983

300 64.7 91 0.11 0.02 0.78 0.92 —_ 0.97

function). The sum was carried out over 1800 reciprocal lattice vectors to achieve
convergence.

The results for the freezing at 100 K at the hydrogen-rich side are shown in figures 3
and 6 (detail) and table 3. The pressure of the liquidusincreasessmoothly with decreasing
mole fraction H,. The solidus increases steeply with mole fraction Ha,, the solubility
being 1.7 mole percent helium at the highest calculated state point. The agreement with
the freezing point of pure hydrogen [37] and the three-phase line solid-fluid-fluid [17]
(see table 4) is good. However, this good agreement is due to a fortuitous cancellation
of errors, since for pure hydrogen, the calculated volume of the fluid at the transition is
10% smaller than the experimental value [27]. This is partly compensated because the
calculated isotherm is 15% off in pressure in this region. An interesting point is shown
in table 3: for the compositions 0.8 and 0.9, the fluid has a higher mass density than the
solid. This results in density inversion of the solid and fluid phases, that has also
been observed experimentally [19]. For pure helium, the freezing pressure is in good
agreement with the experimental data |38] (see table 3). For a fluid mixture with 2%
hydrogen, there is no solubility of hydrogen in the solid. Note however, that the phase
separation is found at pressures lower than the melting point of helium, This means that
below the freezing pressure of helium, a solid consisting of pure helium grows from a
helivm-rich fluid mixture, while starting from a pure helium fluid, no solid would yet
grow. This is of course inconsistent. If a2 helium-rich mixture freezes at a lower pressure
than the pure component, there should be a peritectic point and thus a solubility in the
solid that is larger than in the fluid. We have checked this by constraining the solid
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p{kbar)

Figure 7. The solid-fluid equilibrium at
0.20 0ke]5t 1.00 300 K calculated with DFTE. The full curves
are the liquidus and the solidus. The
broken curve is the caleulated fluid—fluid
X(Hz‘) binodal curve.

composition to be higher than the fluid composition. As a result, no minimum of 25 as
a function of p occurred.

At 300 K (see figures 4 and 7 and table 3), the pressure of the liquidus also increases
gradually from the freezing point of hydrogen, in agreement with the results of Schouten
and van den Bergh [19]. The solubility of helium in the solid is about 3 mole percent at
the pressure of the three-phase equilibrium. However, the quantitative agreement with
experiments [19, 39] is bad, since the transition pressure found is 60% too high. As a
result, the agreement of the calculated three-phase line with the experimental one is
also bad, see table 4. It can be seen from table 3 that density inversion occurs for a fluid
containing 109 helium, but not for 5% helium and smaller mole fractions. This is in
reasonable agreement with experiments [19], where at most 6% was needed to obtain
density inversion. On the helium-rich side, the agreement of the calculated freezing
pressure with experiment [38] is remarkable, see table 3. However, the same incon-
sistency occurs as at 100 K. Again, the helium-rich fluid is found to be in equilibrium
with a pure helium solid at pressures befow the freezing pressure of pure helium.

We can think of three possible reasons for this inconsistency. Firstly, it may be due
to the omission of the fourth rLV of the HCP lattice. We have performed calculations at
100 X taking into account the fourth RLv. Pure helium then freezes at 75 kbar into an
HCP lattice, while a mixture with 2% hydrogen freezes at 62 kbar into a solid consisting
of pure helium. These results have to be considered with care, since we had to extrapolate
Q¢Qp to obtain the transition points. Nevertheless, it suggests that the omission of the
fourth star of the HCP lattice is not the cause of the inconsistency.

Secondly, the helium-rich fluid may be metastable with respect to demixing into a
hydrogen-rich solid and a helium-rich fluid (8y,F). We found that at T= 300K and at
the freezing pressure of helium amixture containing 2% hydrogen wasindeed metastable
with respect to fluid-fluid separation and thus certainly to demixing into a fluid and a
hydrogen-rich solid. It is then likely that the solidus and liquidus that start from the
helium melting point do increase and cross the sy, F equilibrium at a very small mole
fraction hydrogen. Thus, at 2% hydrogen, one should obtain coexistence with a hydro-
gen-rich solid. We have tried to obtain such a coexistence but did not find one, probably
because the difference in density is too large (about 50%) and the difference in con-
centration is also very large (the concentration of the solid is about 97% and of the fluid
less than 2%), causing the expansion to break down.
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In the third place. the inconsistency may be due to the truncation of the expansion
of the grand potential of the solid (7) after second order. Unfortunately, it is not possible
to calculate the three-particle direct correlation function for a mixture at these high
densities, On the other hand, in the phase diagram calculated for a mixture of Lennard-
Jones molecules with a diameter ratio of 0.9 by the same expansion (see [14], figure g),
an analogous inconsistency occurs. In this case, an azeotropic phase diagram is obtained
where, for a mole fraction of the large molecules above 0.5, the solidus is at higher
temperatures than the liquidus.

5. Summary and conclusions

The self-consistent HMSA integral equation has been tested on the system helium-—
hydrogen at very high density. The results for the pressure and the radial distribution
functions are in good agreement with computer simulations. From the resulting
isotherms, the fluid-Auid demixing was calculated. It is in fair agreement with the
experimental results of Streett and van den Bergh and Schouten. This demonstrates the
usefulness of the HMSA integral equation for binary mixtures and the consistency of the
HMSA results with variational perturbation theory with which the unlike interaction was
determined. The width of the binodal curve is in far better agreement with experiments
than the one calculated from variational theory with the vDWIF approximation. There-
fore, it seems worthwhile to tune the unlike interaction potentials with the help of the
HMSA integral equation to the experimental results. The spinodal curve, calculated from
the composition fluctuation structure factor S¢e(%) is not consistent with the calculated
binodal curve. The reason for this inconsistency is probably that the self-consistency of
the integral equations is not imposed on S¢c(k).

The solid-fluid equilibria of the mixture were calculated using the density functional
theory of freezing in the formulation of Haymet and Oxtoby, truncating the expansion
after second order and leaving out the fourth rLV. At 100K, the agreement with
experiments is good at the hydrogen-rich side, but this is probably fortuitous, At 300 K,
onthe hydrogen-richside, the shape of the liquidusisinagreement with the experimental
resultof van den Bergh and Schouten. The agreement with the experimentsis qualitative.
On both isotherms, we find a solubility of helium in the hydrogen-rich solid of a few
percent. It is interesting to verify this result experimentaily. The unusual phenomenon
of density inversion between the solid and fluid phases is found, in agreement with
experiments. For pure helium, the agreement with experimental data is good. In
contrast. a mixture containing mostly helium is found to freeze into a pure helium solid
at a pressure below the freezing pressure of pure helium, which is inconsistent. Probably,
such a mixture should freeze into a hydrogen-rich solid that has a very different density,
so that the expansion breaks down. Therefore, the present version of DFTF seems useful
as long as the difference in density between the coexisting phases is not too large.
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